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PHYSICS HELPING MATHEMATICS: A COUPLE OF

EXAMPLES

VAMSI PRITHAM PINGALI

Abstract. We present two examples in analysis (complex and real)

that illustrate the utility of physical intuition in mathematical proofs.

The examples are related to the Riemann mapping theorem in com-

plex analysis and the multivariable calculus question of which curl-free

vector �elds are gradients of functions.

1. Introduction

The programme of making physics rigorous is called mathematical physics

(one of Hilbert's problems). The interaction between these two subjects

works in the other direction too. That is, there are purely mathematical

problems (that a priori have no connection with physics) which can be solved

using intuition coming from physics. The modern aspects of this interac-

tion are dubbed �physical mathematics" [3]. There are several examples of

such fruitful synergies between the subjects. In this article, we will present

two relatively elementary (advanced undergraduate or early graduate level)

topics that illustrate the utility of physical intuition in mathematics.

2. The Riemann mapping theorem and electrostatics

The Riemann mapping theorem states the following.

Theorem 2.1. Let U ⊂ C be a simply connected open set. There exists an

invertible analytic map f : U → D (where D is the unit disc centred at the

origin) such that its inverse is also analytic. If there are two such maps,

they di�er by a Möbius transformation of the disc to itself.

The uniqueness part follows from standard complex analysis (Schwarz

lemma). This part was proven by Poincaré much later. Riemann's original
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formulation of the existence part of the theorem assumed that the subset U

was bounded and had a smooth boundary, i.e., near every boundary point,

the boundary could be parametrised as a smooth regular path. We shall

prove the theorem under this assumption. The physical idea at play is to

pretend that U is an insulator whose boundary is grounded, i.e., has zero

electric potential. Then we place a charge at a point p ∈ U . If U is a disc,

then choose p to be the centre. In that case, the equipotential curves are

concentric circles and the electric �eld lines radiate outwards. We expect

a similar phenonmenon to take place when U is not the unit disc. The

corresponding Riemann map is simply the map that takes the equipotential

curves to the circles and the �eld lines to the radial lines. The catch with

this �proof" is that we need to rigorously prove that the potential due to a

charge with grounded boundary exists. Riemann assumed this fact without

proof [1]. (This problem can be phrased as �nding the minimum of the

electrostatic energy, and it was assumed back in the day that this minimum

exists. This fact was termed `Dirichlet's principle' by Riemann.)

The details of Riemann's proof are as follows.

(1) Existence of a Green's function (potential of a unit charge): There

exists a smooth solution u on Ū satisfying ∆u = 0 on U and u(z) =

ln |z − p| on ∂U . This fact is deep and its proof will take us too

far a�eld. We will give a sketch of the proof later. Consider G =

ln |z − p| − u. This function is smooth away from p, ∆G = 0 away

from p, G = 0 on the boundary, and G corresponds to the potential

with a �unit charge" at p. (Rigorously, ∆G = δ(p) where δ is the

Dirac delta distribution.)

(2) Existence of a harmonic conjugate (a function whose level sets are

�eld lines): There exists a smooth function v on U such that ∇v =

(−uy, ux) (that is, its gradient points along the equipotential curves).

The function is de�ned as v(z) =
∫ z
p (−uy, ux).~dl along any path α(t)

from p to z. The fact that this integral is path-independent follows

from simple-connectedness. Indeed, suppose α(t), β(t) are two such

paths, then consider the piecewise smooth closed path γ(t) : [0, 1]→
U given by the concatentation of α(2t) and β(2 − 2t). By simple-

connectedness, there is a continuous map H(t, s) : [0, 1]× [0, 1]→ U

such that H(1, s) = H(0, s) = p ∀ s,H(t, 1) = p ∀ t,H(t, 0) =
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γ(t) ∀ t. Actually, it turns out that H can be assumed to be piece-

wise smooth without loss of generality (Whitney's approximation

theorem). Now∫ 1

0

∫ 1

0

(
∂(−uy)
∂y

(
−∂y
∂t

∂x

∂s
+
∂x

∂t

∂y

∂s

)
+
∂ux
∂x

(
−∂y
∂s

∂x

∂t
+
∂y

∂t

∂x

∂s

))
dsdt = 0

by the harmonicity of u. By the fundamental theorem of calculus,

this integral is also equal to
∫
~F .~dl(s = 1) −

∫
~F .~dl(s = 0) where

~F = (−uy, ux). (We have essentially proven Green's theorem in this

special case.)

The above argument shows that v is well-de�ned. It is easy to

check that u+
√
−1v is a holomorphic function (that is, the Cauchy-

Riemann equations are met).

(3) Construction of the map: Consider f(z) = eu(z)+
√
−1v(z)(z − p).

This function is holomorphic and takes p to 0. Note that |f | =

|z − p|eu(z) = eG(z) and Arg(f(z)) = v + Arg(z − p). As expected,
the �equipotential" curves are taken to circles and the ��eld lines"

to radial lines. By the mean value property for harmonic functions,

no local maxium of G is attained. Proving that f is indeed a bi-

holomorphism taking Ω to D is more technical.

(4) Proof that the map actually works: On the boundary, i.e., ∂Ω∪{p},
G ≤ 0. Hence, G ≤ 0 throughout. This means that f(Ω) ⊂ D. By
the open mapping theorem for holomorphic functions, the image

f(Ω) is open. We claim that it is closed too. Suppose f(zn)→ b ∈
D. By compactness of D̄, a subsequence znk

converges to some z ∈
D̄. As zn ∈ Ω→ ∂Ω, we see that |f(zn)| → 1. Since |b| < 1, we see

that z ∈ D and f(z) = b. Thus f is onto. Moreover, f−1(p) = {0},
and since f ′(p) > 0 we see that the multiplicity of the root at p is

1. By the argument principle of complex analysis, we see that f is

1−1. A holomorphic 1−1 onto function is a biholomorphism (again

by the argument principle).

As mentioned earlier, the solvability of ∆u = 0 with Dirichlet boundary

conditions is a tricky a�air (that Riemann assumed without proof). While

we shall not attempt to prove it in this article, what follows is a very high-

level sketch of the ideas involved. By means of extending the boundary

function to a smooth function and subtraction, we can reduce this problem

to solving ∆u = f with u = 0 on the boundary. The strategy is to consider
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the �electrostatic energy" E[u] =

∫
Ω

(|∇u|2 + fu) and attempt to minimise

it (with the restriction that u is zero on the boundary). If a smooth min-

imiser u0 does exist, then
dE[u0+tv]

dt |t=0 = 0 for all smooth functions v whose

restriction to the boundary is zero. One can use this fact to conclude that u

solves ∆u = f . To minimise this energy, one needs a string of inequalities.

One �rst proves that E is bounded below on the space of smooth compactly

supported functions in Ω. Then one considers a sequence of functions con-

verging to the in�mum of E. The di�culty is that, a priori, no subsequence

of such a sequence necessarily converges (in a reasonable sense) to a smooth

function. One proves that convergence does happen in some sense to a

potentially non-smooth function. Then one proves that the non-smooth

function is actually smooth and hence solves the desired equation. �

This approach of proving results in complex analysis motivated from

electrostatics has taken a life of its own (potential theory). In fact, one can

use these ideas to generalise the Riemann mapping theorem to the famous

uniformisation theorem of Riemann surfaces.

3. Shapes and electromagnetic fields

The line integrals of conservative vector �elds ~F do not depend on the

paths taken. Such vector �elds are gradients of potential energy functions,

i.e., ~F = ∇U . In particular, ∇× ~F = ~0. One might wonder if the converse

is true. It can be easily shown to be true if the domain of ~F is all of R2 (by

simply �nding U using the work done by ~F along a straight line).

Using Ampère's law applied to an in�nite current carrying wire perpen-

dicular to the plane (and passing through the origin), we see that the mag-

netic �eld is ~B = (− y
x2+y2

, x
x2+y2

). The domain of this �eld is R2−{(0, 0)}.
This �eld obeys Maxwell's equation: ∇ × ~B = ~0 on its domain. Unfortu-

nately, ~B 6= ∇U . (If it were, then the line integral around a circle ought

to have been 0 but it can be calculated to be 2π.) However, interestingly

enough, this is the only thing that can go wrong for a smooth vector �eld ~F

in R2−{(0, 0)}. The proof of this fact is technical but a sketch is as follows:

Suppose ∇× ~F = ~0. Then let c =

∫
~F .d~l around the unit circle anticlock-

wise, and ~G = ~F − c
2π
~B. Now the line integral of ~G along the unit circle is

0. We simply need to prove that the line integral along any other piecewise

smooth simple closed curve is 0. (Then we can simply �nd the work done
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and produce a potential.) Firstly, the integral along any circle centred at

the origin is 0 by Green's theorem. Secondly, any piecewise smooth simple

closed curve that does not enclose the origin (recall that the deep Jordan

curve theorem asserts that any simple closed curve divides the plane into

two parts) leads to a zero line integral by Green's theorem. If it does enclose

the origin, then simply throw out a disc around the origin and use Green's

theorem to conclude that the line integral is the same as that over a small

circle, which is zero. (The cleanest way of making this sketch somewhat

self-contained is to simply prove that the line integral is invariant under

piecewise smooth deformations of curves akin to 2, and to prove that any

piecewise smooth simple closed path can be deformed to a constant path if

it does not enclose the origin, and to a circle if it does. The latter can be

proven by approximating using piecewise-linear approximations.)

In fact, the arguments above can be generalised to show that if we throw

out n points from the plane, then after subtracting multiples of the mag-

netic �elds of n current carrying wire, a �eld ~F satisfying ∇ × ~F = ~0 is

conservative. In other words, there is an n-dimensional vector space worth

of things that can go wrong, i.e., curl-free �elds upto gradients of potential

energies. Therefore, we can glean information about the shape of a domain

(how many holes it has) by simply answering the question of which vector

�elds are conservative.

This philosophy of relating the shape of an object to the solutions of cer-

tain partial di�erential equations (arising from physics) on it is very general.

Donaldson [2] used it to great e�ect to prove that there are di�erent ways

of �doing calculus" on R4. (More precisely, that there is a non-standard

smooth manifold structure on R4.) Later on, Seiberg and Witten [4] sim-

pli�ed Donaldson's proof by using another set of equations arising from

physics.
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